Linear Algebra, Winter 2022

List 1

Algebra and trig review, vector operations

- 1. Which of the following are true for **all** real values of the variables?
 - (a) 2x = x + x(b) 2(x + y) = 2x + y(c) $(x - y)^2 = x^2 - 2xy + y^2$ (d) (6 + a)/2 = 3 + a/2(e) -(y + 2) = -y + 2(f) $-(a + b)^2 = (-a + b)^2$ (g) $x^3 + 3x = x + x$ (h) $k^{-2} = 1/k^2$ (i) $k^{-2} = -\sqrt{k}$ (j) $x^{a+2} = x^a \times x^2$
- 2. Compute the following values:
 - (a) $\cos(0)$ (d) $\cos(45^{\circ})$ (g) $\cos(\pi/2)$ (j) $\sin(4\pi/3)$ (b) $\sin(0)$ (e) $\cos(60^{\circ})$ (h) $\sin(\pi/2)$ (k) $\arccos(\frac{1}{\sqrt{2}})$
 - (c) $\cos(30^\circ)$ (f) $\cos(\pi/3)$ (i) $\sin(180^\circ)$ (l) $\arccos(\frac{\sqrt{3}}{2})$

3. Find one value of θ for which both $-\sqrt{5} = \sqrt{20}\cos(\theta)$ and $\sqrt{15} = \sqrt{20}\sin(\theta)$.

4. Simplify $(2e^7)^{10}$.

In 2D, the zero vector is $\vec{0} = [0,0]$, and the standard basis vectors are $\hat{i} = [1,0]$ and $\hat{j} = [0,1]$. In 3D, the zero vector is $\vec{0} = [0,0,0]$, and the standard basis vectors are $\hat{i} = [1,0,0]$ and $\hat{j} = [0,1,0]$ and $\hat{k} = [0,0,1]$.

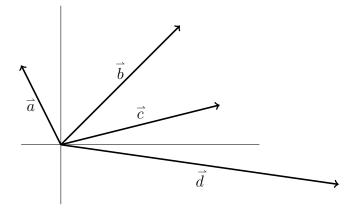
In any dimension, **magnitude** (or **length**): $|[a_1, ..., a_n]| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$ **scalar multiplication:** $s[a_1, ..., a_n] = [sa_1, ..., sa_n]$ **vector addition:** $[a_1, ..., a_n] + [b_1, ..., b_n] = [a_1 + b_1, ..., a_n + b_n]$ **vector subtraction:** $[a_1, ..., a_n] - [b_1, ..., b_n] = [a_1 - b_1, ..., a_n - b_n]$

- 5. Calculate each of the following:
 - (a) [3,2] + [7,1](d) $8 \begin{pmatrix} 3\\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 7\\ 1 \end{pmatrix}$ (g) $9\hat{\imath} + 2\hat{\jmath}$ (in 2D)(b) $\langle 3,2 \rangle + \langle 7,1 \rangle$ (e) $\frac{1}{20}[3,2]$ (h) $6\hat{\imath} + \hat{\jmath} 2\hat{k}$ (c) 5[-4,3](f) 9[1,0] + 2[0,1](i) $6\hat{\jmath} 4(\hat{\jmath} \hat{k})$
- 6. **Draw** the following vectors as arrows all on the same plane (one drawing, not three drawings):
 - (a) the vector $2\hat{i} + \hat{j}$ with its start at (0, 0).
 - (b) the vector $2\hat{i} + \hat{j}$ with its start at (-3, 0).
 - (c) the vector $2\hat{i} + \hat{j}$ with its start at (-1, -1).

- 7. Draw the following vectors as arrows all on the same plane (one drawing, not four drawings):
 - (a) the vector [2, 1] with its start at (0, 0).
 - (b) the vector 4[2,1] with its start at (0,0).
 - (c) the vector 1.5[2, 1] with its start at (0, 0).
 - (d) the vector (-1)[2, 1] with its start at (0, 0).
- 8. Which of the following are scalar multiples of [4, 2, -6]?

(a)
$$\begin{pmatrix} 20\\10\\-60 \end{pmatrix}$$
 (c) $[0,0,0]$ (e) $\begin{pmatrix} \sqrt{32}\\\sqrt{8}\\-\sqrt{72} \end{pmatrix}$
(b) $[-12,-6,18]$ (d) $\begin{pmatrix} 0.4\\0.2\\-0.6 \end{pmatrix}$ (f) $[8,4,-10]$

- 9. Draw, on one picture, the vectors $7\hat{j}$ and $4\hat{i} 4\hat{j}$ as arrows starting at (0, 0). What is the angle between these two vectors?
- 10. Let P be the point (5,2) and let Q be the point (1,9). Describe the vector $\begin{bmatrix} 5\\2 \end{bmatrix} \begin{bmatrix} 1\\9 \end{bmatrix}$ in words, without doing any calculations.
- 11. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be as in the image below.



Write a true equation of the form $__ + _ = _$ using these vectors.

- 12. Write two true equations of the form $_ _ = _$ using vectors from Task 11.
- 13. Calculate the following vectors or scalars:

(a)
$$|4\hat{\imath} - 4\hat{\jmath}|$$
 (b) $|[0,7]|$ (c) $\frac{[3,2]}{|[3,2]|}$ (d) $\left|\frac{[3,2]}{|[3,2]|}\right|$

- 14. Calculate each of the following. Each answer will be either a scalar formula or a vector formula involving t.
 - (a) $5\binom{3}{2} + t\binom{7}{1}$ (b) $t + |\begin{bmatrix} 3\\2 \end{bmatrix}|$ (c) |t[3,2]|(d) $|[1+t,1-t]|^2$

- 15. A parallelogram has the vector $\vec{a} = [5,2]$ along one edge and $\vec{b} = [3,8]$ along another edge. Compute the lengths of the two diagonals of the parallelogram.
- 16. Give a vector that is parallel to $\vec{v} = [8, -1, 4]$ but has length 1.

The dot product (also called scalar product) of \vec{u} and \vec{v} is written $\vec{u} \cdot \vec{v}$ and can be calculated as either

$$\overline{u} \cdot \overline{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

or

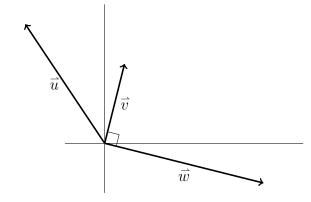
$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\text{angle between } \vec{u} \text{ and } \vec{v})$$

Two vectors are called **orthogonal** if their dot product is 0.

17. Calculate
$$\begin{pmatrix} 5\\7 \end{pmatrix} \cdot \begin{pmatrix} -8\\1 \end{pmatrix}$$
.

18. Calculate $(4\hat{\imath} - 4\hat{\jmath}) \cdot (7\hat{\jmath})$ in two ways:

- (a) by using (4)(0) + (-4)(7).
- (b) by using $(4\sqrt{2})(7)\cos(135^{\circ})$. (See Tasks 13(a), 13(b), and 9.)
- 19. Find the angle between $\begin{pmatrix} -3\\\sqrt{3} \end{pmatrix}$ and $\begin{pmatrix} \sqrt{3}\\1 \end{pmatrix}$.
- 20. Let \vec{u}, \vec{v} , and \vec{w} be as in the image below.



- (a) Is $\vec{u} \cdot \vec{v}$ positive, negative, or zero?
- (b) Is $\vec{u} \cdot \vec{w}$ positive, negative, or zero?
- (c) Is $\vec{v} \cdot \vec{w}$ positive, negative, or zero?
- 21. For each formula below, state whether it represents a scalar (number), a vector, or "nonsense" (meaning it is not a legal operation; for example, $\vec{v}+5$ is nonsense.

(q) $\left| \vec{u} \right|$

- (a) $\vec{a} + \vec{b}$ (m) $\vec{0} \cdot \vec{w}$ (g) \vec{n}/s
- (h) $\vec{a} s$ (b) $\vec{u} \cdot \vec{v}$ (n) $\begin{pmatrix} 4\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\8 \end{pmatrix}$
- (i) $\vec{c} + s\vec{b}$ (c) $\vec{a}\vec{b}$
- (j) $t(\vec{a} + \vec{b}) \vec{c}$ (o) $[4,2] \cdot [s,t]$ (d) $t\vec{a}$ (p) $\vec{w} \cdot [s,t]$
- (k) $(\vec{a} \cdot \vec{b})\vec{c}$ (e) $t + \vec{v}$
- (1) $\vec{0} \vec{a}$ (f) $(t+s)\vec{u}$

(r)
$$\left| \left[9, 2, \frac{1}{2} \right] \right|$$
 (t) $\left| \vec{a} \right| + \left(\vec{b} \cdot \vec{c} \right)$ (v) $\left(\vec{a} \right)^2$

(t) $|a| + \langle b \rangle$ (u) $|\vec{a}| (\vec{b} \cdot \vec{c})$ (w) $\left|\vec{a}\right|^2$ (s) $|\vec{w}|\vec{v}$

22. State whether each pair of vectors below is parallel, perpendicular, or neither.

(a)
$$\begin{pmatrix} 5\\2 \end{pmatrix}$$
 and $\begin{pmatrix} -2\\7 \end{pmatrix}$
(b) $\begin{pmatrix} 5\\2 \end{pmatrix}$ and $\begin{pmatrix} 1\\0.4 \end{pmatrix}$
(c) $2\hat{i} - 8\hat{j}$ and $-8\hat{i} + 2\hat{j}$
(d) $\begin{pmatrix} 10\\-6\\3 \end{pmatrix}$ and $\begin{pmatrix} 0\\2\\4 \end{pmatrix}$
(e) $9\hat{i} + 11\hat{j} - 29\hat{k}$ and $2\hat{i} + j + \hat{k}$
(f) $32\hat{i} + 180\hat{j}$ and $32\hat{i} + 7\hat{k}$

23. Give an example of a vector that is perpendicular to $\vec{v} = \hat{i} + 9\hat{j} + 4\hat{k}$.

24. Knowing that

$$\cos(19.5^\circ) \approx \frac{33}{35}, \quad \cos(25.2^\circ) \approx \frac{19}{21}, \quad \cos(31^\circ) \approx \frac{6}{7}, \quad \cos(62.96^\circ) \approx \frac{15}{33},$$

find the acute angle between [6, 3, 6] and [6, 9, 18].

A linear combination of a collection of vectors is a sum (+) of scalar multiples of those vectors. (A linear combination of one vector is simply a scalar multiple of that one vector.)

25. Write
$$\begin{pmatrix} 13\\3 \end{pmatrix}$$
 as a linear combination of $\hat{i} = \begin{pmatrix} 1\\0 \end{pmatrix}$ and $\hat{j} = \begin{pmatrix} 0\\1 \end{pmatrix}$.
26. Write $\begin{pmatrix} 13\\3 \end{pmatrix}$ as a linear combination of $\vec{a} = \begin{pmatrix} 1\\1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2\\0 \end{pmatrix}$.
27. Why is it impossible to write $\begin{pmatrix} 13\\3 \end{pmatrix}$ as a linear combination of $\vec{a} = \begin{pmatrix} 1\\1 \end{pmatrix}$ and $\vec{c} = \begin{pmatrix} 3\\3 \end{pmatrix}$?

28. For the vectors

$$\vec{v_1} = 2\hat{\imath} + 9\hat{\jmath} - 6\hat{k}, \qquad \vec{v_2} = 4\hat{\imath} + 2\hat{\jmath} - 6\hat{k}, \qquad \vec{v_3} = -8\hat{\jmath} + 3\hat{k}$$

either write $\vec{v_1}$ as a a linear combination of the other vectors or explain why it is not possible to do so.